If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x-2x^2=0
a = -2; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-2)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-2}=\frac{-26}{-4} =6+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-2}=\frac{0}{-4} =0 $
| -6m+40=8(4m+5) | | 6x-20=4x+18 | | 3.6h=- | | 7g+14=10g-55 | | -13x^2+54x+147=0 | | 21+3j=8-3j | | 3+h/6=7 | | -6(-6-8k)=4K-8 | | 17.5=7x+14 | | k/3=3=8 | | n+17=2(3+4) | | 22x+24.50=47x+18.25 | | -3(4x-2)=-12+-6 | | n-(-12)=-3 | | 3.1y-41=3y-17-4.1y | | 12-2m=2m-8 | | 3-4/7x=11 | | 5(x-6)^2=-80 | | XxY=-14 | | 6k=(2k-4) | | -4(1-4m)=-20+8m | | 10=5x+10 | | 1.3y-41=3y-17-4.11 | | -3(4x-2)=12x+-6 | | 5(x-6)^2+180=100 | | 2/5m-8/5=4/5 | | -12.42=0.03x | | -0.1035=23x | | x+8x3=8x-5x | | -0.007x=0.2002 | | 9(4-x)=26+4x | | 83=-5(5-4x)-2x |